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An important material resulting from the intense research in
homogen_eous single-site olefin polymerization cata%ys_kiis linear By 2
low-density polyethylene (LLDPE)The branched-chain structure 16000 4
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decreases crystallinity, which facilitates processing and imparts e B4 — % By
favorable product properties for myriad applicatiériypically, g 12000 \ % 8
LLDPE branching is achieved via copolymerization of ethylene g 8000 § 10
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with ana-olefin comonomer; however an alternative approach that

has recently received attention is homogeneous “tandem catalysis”. 4000 14 By
Here one catalyst producesolefin oligomers which are incorpo- 18
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_ratid into h_|gh m_olecular ylx_/e_lght k|c])olyethytielne b); a s(,jecqnd caﬁglyst 67 56 48 36 28 o " 10
in the reaction mixture, utilizing theameethylene feed. Since this Log Molocular Weight Tormp ()

type of polymerization requires intermolecular processes at low o ]

catalyst concentrationd)( the question arises as to whether two Fgure 1. GPC (A) and DSC (B) data for ethylene polymerization with a
h . . . 20:1Zr:Ti catalyst ratio at 95C with activatorsB; andB,.

catalyst centers constrained to close spatial proxinilty rhight

perform such functions more efficiently. The ability of the binuclear scheme 1

activator [PRC'],[1,4-(CeFs)3sBCsF4B(CeFs)s 28 (B,) to spatially “R CoHs
confine two cations via tight ion pairidgllows us to address this ml
question.
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In the experiments described, b&(BuN)(;°-3-ethylindenyl)-
ZrMez® (Zr) is the source of vinyl-terminated polyethylene oligo-
mers, and MgSi(BUN)(;7>-CsMey) TiMe,? (Ti) is the source of high-
molecular weight polymer, due to its ability to efficiently co-enchain
a-olefins®19Mononuclear [PEC'] [B(CeFs)4]* (B1) was used for

+ B; or By yield low-molecular weight polymers (biH NMR)
having predominantly ethyl branches (B$C NMR3) and low
melting points. Polymerizations wiffi + B or B, are~50x more
active than those witlZr and produce high-molecular weight
polyethylenes (by GPC) with melting points consistent with

Me unbranched structurésNext, a series of polymerizations wiBp
FF Sl e as cocatalyst was carried out to probe the effect of relative catalyst
@ @ \ \Me @ - . . . .
(CeFs)sB OB(Cer)a Me;Siy ZiMe;  Me,SiLTive, PhC B (FCFF> concentrations on product properties, along with parallel experi-
Ph,C F F Cph, N N 4 ments using mononucle®; (Table 1, entries 512). Ata 1:17r:
/)\ 4\ Ti stoichiometric ratio (Table 1, entries 5, 6) use of a mononuclear
or binuclear cocatalyst has little discernible effect on the resultant
B, Zr Ti B, polymer. Importantly, from the activities in entries-4, >95% of

) ) the product is produced Bl in both cases, as is reinforced by the

control experiments. We report that use B in ethylene vy of the polymeric product properties. Similarly, at 20:1
polymerizations with stoichiometrically appropriate quantities of Zr:Ti with By, ~85% of the product should be produced By
Zr andTi produces aignificantlymore homogeneous polyethylene and 95% ofTi should be paired witizr .14
than that produced by polymerizations under identical conditions For the polymers synthesized wigln:Ti > 20:1 (Table 1, entries
with B; as cocatalyst. The bulk and spectroscopic properties of the 7—14), 13C NMR™ confirms the presence of branchesQg in
B,-derived polymer are consistent with highly branched poly- length) along the chain backbone for polymers produced WBing
ethylene'? o ) o andB; as the cocatalysts. There are, however, significant differences

The ethylen_e polymerization properties (_)f the |nd|V|duaI. group i, polydispersities and thermal properties between the polyethylenes
4 catglysts WlthBl a_nd B, (Tabl_e 1, entries 14) Were_flrSt produced with binuclear and mononuclear cocatalysts. For poly-
examined using previously described methodofegto provide a 0\ ations cocatalyzed 84, aszr :Ti increases, the GPC traces
baseline for assessing cooperativity effects. Polymerizatiods of becomebimodal or polymodal DSC analysis of thd;-derived

*To whom correspondence should be addressed. E-mail: t-marks@ polyethylen_e reve51_I§ low melting points and in some cases mulltiple
northwestern.edu. endothermic transitions. In marked contrast, GPC traces of the
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Table 1. Catalytic Olefin Polymerization Data?

entry Zr (umol) Ti (umol) B, (umol) By (umol) time (min) temp (°C) activity® M, pD¢ Tn(°C)
1 10 0 0 10 45 23 1x 10 610 59.6

2 10 0 5.0 0 70 23 9.% 10* 630 54.2

3 0 4.0 0 4 1 29.5 8.5 10° 408 000 2.8 139.2
4 0 7.0 3.4 0 1.7 315 4.9 10° 109 000 2.24 139.8
5 5.0 5.0 5.0 0 4 28 9.3 1¢° 274 000 3.88 137.5
6 5.0 5.0 0 10 3 315 3.5 10° 226 000 2.24 140.4
7 9.9 0.5 5.0 0 15 26.5 1810 780 000 2.34 118.6
8 9.9 0.5 0 10 12 26 6.% 10° 451 000 2.56 72

9 9.9 0.28 5.0 0 12 25 1% 10° 347 000 3.46 128.4
10 9.9 0.28 0 10 14 30 1210 181 000; 320 1.80;1.21 75.1
11 9.9 0.2 5.0 0 21 25 1. 10 455 000 2.69 122.4
12 9.9 0.2 0 10 17 25 4.8 10° 396 000; 7600; 360 2.31;1.88;1.28 122.1
13 9.9 0.5 5.0 0 12 95 1.0 10° 66 700 2.89 130.6
14 9.9 0.5 0 10 10 96 1.2 10° 14 900; 540 6.16; 1.69 ~85, 123.6

aConditions: 100 mL toluene solvent, 1.0 atm ethyléh&ctivity in units of g (mol metaly® (atm ethylene)* h~1. ¢ By GPC with universal calibration
using polystyrene standardsBy 'H NMR.

polyethylenes from analogots-cocatalyzed polymerizations are
monomodalindicating a more homogeneous polymer, and poly-
dispersities are essentially constant with risgrgTi ratio (Table

(3) For a review of late-metal olefin polymerization catalysts see: lttel, S.
D.; Johnson, L. K.; Brookhart, MChem. Re. 200Q 100, 1169-1203.

(4) For cocatalyst effects in olefin polymerization see: (a) Chen, M.-C.; Marks,
T.J.J. Am. Chem. So2001, 123 11803-11804. (b) Chen, E.-Y.; Marks,

1). DSC-measured melting points of tBg-derived polymers are

consistent with LLDPE? At elevated temperatures, polymerizations

with 20:1 Zr:Ti (Table 1, entries 13, 14) not surprisingly show
increased activity. Again, polymer produced with exhibits a

bimodal GPC trace, and the DSC exhibits two endothermic

transitions, a broad one centered~a85 °C and a sharp one at
123.6 °C (Figure 1). High-temperature polymerization wiB

produces a more homogeneous polymer with a monomodal GPC

trace and a single endothermic DSC transition.
These results show that binuclear activaiy dramatically

increases the efficiency of homogeneous heterobimetallic olefin
enchainment processes for LLDPE synthesis and are consistent with
a pathway in which the binuclear center preferentially binds/detains

o-olefin fragments for subsequent enchainment (SchenieTh)is

unprecedented enhancement of cooperativity between two single-

T. J.Chem. Re. 200Q 100, 1391-1434. (c) Chen, E.-Y.; Metz, M. V.;
Li, L.; Stern, C. L.; Marks, T. JJ. Am. Chem. So0d.998 120, 6287
6305.

(5) James, D. E. lEncyclopedia of Polymer Science and Enginegrivigrks,
H. F., Bikales, N. M., Overberger, C. G., Menges, G., Eds.; Wiley-
Interscience: New York 1985; Vol. 6, pp 42854,

(6) Kulshrestha, A. K.; Talapatra, S. klandbook of Polyolefins/asile, C.,
Ed; Marcel Dekker: New York, 2000; ppi70.

(7) For recent reviews see: (a) Komon, Z. J. A.; Bazan, GM@cromol.
Rapid Commur2001, 22, 467-478. (b) de Souza, R. F.; Casagrande, O.
L., Jr. Macromol. Rapid Commur2001, 22, 1293-1301.

(8) (a) Patton, J. T.; Marks, T. J.; Li, L. PCT Intl. Appl. 9914222, 1999. (b)
Li, L.; Metz, M. V.; Marks, T. J.; Liable-Sands, L. Rheingold, A.Rolym.
Prepr. (Am. Chem. Soc., RiPolym. Chem.p00Q 41, 1912-1913. (c)

For studies with homobimetallic, covalently linked systems, see: Li, L.;
Metz, M. V.; Li, H.; Chen, M.-C.; Marks, T. J.; Liable-Sands, L.;
Rheingold, A. L.J Am. Chem. SoQ002 124. In press.

(9) (&) Chum, P. S.; Kruper, W. J.; Guest, MA#lv. Mater.200Q 12, 1759~
1767. (b) Stevens, J. C.; Timmers, F. J.; Wilson, D. R.; Schmidt, G. F.;
Nickias, P. N.; Rosen, R. K.; Knight, G. W.; Lai, S. (Dow Chemical Co.).
Eur. Patent Appl. EP 416 815-A2, 1991.

site centers via electrostatic spatial confinement is a step towards (10) McKnight, A. L.; Waymouth, R. MChem. Re. 1998 98, 2587-2598.

rational design of tailored multisite polymerization catalysts, and

the generality of this effect is under continuing investigation.
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